Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29.460
Filtrar
1.
Zebrafish ; 21(2): 128-136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621212

RESUMO

Coordinated signaling pathway activity directs early patterning to set up the vertebrate body plan. Perturbations in the timing or location of signal molecule expression impacts embryo morphology and organ formation. In this study, we present a laboratory course to use zebrafish for studying the role of Wnt signaling in specifying the early embryonic axes. Students are exposed to basic techniques in molecular and developmental biology, including embryo manipulation, fluorescence microscopy, image processing, and data analysis. Furthermore, this course incorporates student-designed experiments to stimulate independent inquiry and improve scientific learning, providing an experience resembling graduate-level laboratory research. Students appreciated following vertebrate development in real-time, and principles of embryogenesis were reinforced by observing the morphological changes that arise due to signaling alterations. Scientific and research skills were enhanced through practice in experimental design, interpretation, and presentation.


Assuntos
Via de Sinalização Wnt , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Padronização Corporal , Desenvolvimento Embrionário , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo
2.
Zebrafish ; 21(2): 181-190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621218

RESUMO

Fipronil is a broad-spectrum insecticide that has off-target effects in developing vertebrate embryos. In this study, we investigate treatment of zebrafish embryos with fipronil over the course of 5 days and examine the effects on body length, the cardiovascular system, and craniofacial morphology. We found the insecticide caused shorter body length and a decrease in eye size. By examining specific heart chamber morphology, as well as jaw angle and length, we quantified defects including enlargement of the heart and increases in jaw length and width. Further studies are needed to assess the mechanisms of fipronil's effect on vertebrate development for both environmental and human health concerns.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra , Inseticidas/toxicidade , Embrião não Mamífero , Pirazóis/toxicidade
3.
Zebrafish ; 21(2): 206-213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38621213

RESUMO

The Ala Wai Canal is an artificial waterway in the tourist district of Waikiki in Honolulu, HI. Originally built to collect runoff from industrial, residential, and green spaces dedicated to recreation, the Ala Wai Canal has since experienced potent levels of toxicity due to this runoff entering the watershed and making it hazardous for both marine life and humans at current concentration, including Danio rerio (zebrafish). A community of learners at educations levels from high school to postbaccalaureate from Oahu, HI was connected through the Consortium for Increasing Research and Collaborative Learning Experiences (CIRCLE) distance research program. This team conducted research with an Investigator and team from Mayo Clinic in Rochester, MN, with the Ala Wai Canal as its primary subject. Through CIRCLE, research trainees sent two 32 oz bottles of Ala Wai- acquired water to a partnered laboratory at the Mayo Clinic in which zebrafish embryos were observed at differing concentrations of the sampled water against a variety of developmental and behavioral assays. Research trainees also created atlases of developmental outcomes in zebrafish following exposure to environmental toxins and tables of potential pesticide contaminants to enable the identification of the substances linked to structural defects and enhanced stress during Ala Wai water exposure experiments.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Humanos , Animais , Havaí , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Embrião não Mamífero/química
4.
Curr Biol ; 34(7): R286-R288, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593774

RESUMO

Tissue folding is a key process for shape generation during embryonic development. A new study reports how a fold in the Drosophila embryo forms by a propagating trigger wave.


Assuntos
Proteínas de Drosophila , Desenvolvimento Embrionário , Animais , Morfogênese , Drosophila , Embrião de Mamíferos , Embrião não Mamífero , Drosophila melanogaster
5.
Georgian Med News ; (346): 98-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38501628

RESUMO

At the current stage of healthcare development, the inclusion of immunomodulators in the complex pharmacotherapy of various immunoinflammatory and viral diseases is widely discussed, but due to the lack of sufficient research and a broad evidence base, not all drugs with similar properties are used in medicine. According to the information obtained from the instructions for the use of immunomodulators, it was obtained that the main contraindications to their use include the prescription of children, pregnant women, and women during breastfeeding. In this study, we evaluated the effects of immunomodulatory drugs: aminodihydrophthalazindione sodium and meglumine acridonacetate, on the early developmental stages of Danio rerio (Zebrafish) embryos.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Criança , Humanos , Feminino , Gravidez , Agentes de Imunomodulação , Embrião não Mamífero , Desenvolvimento Embrionário , Poluentes Químicos da Água/farmacologia
6.
Sci Total Environ ; 926: 171902, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521262

RESUMO

Dimethyl phthalate (DMP), the lowest-molecular-weight phthalate ester (PAE), is one of the most commonly detected persistent organic pollutants in the environment, but its toxic effects, especially cardiovascular developmental toxicity, are largely unknown. In this study, zebrafish embryos were exposed to sublethal concentrations of DMP from 4 to 96 hpf. Our results showed that DMP treatment induced yolk retention, pericardial edema, and swim bladder deficiency, as well as increased SV-BA distance and decreased heart rate, stroke volume, ventricular axis shortening rate and ejection fraction. In addition, oxidative stress and apoptosis were found to be highly involved in this process. The results of transcriptome sequencing and mRNA expression of related genes indicated that MAPK and calcium signaling pathways were perturbed by DMP. These findings have the potential to provide new insights into the potential developmental toxicity and cardiovascular disease risk of DMP.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Sinalização do Cálcio , Embrião não Mamífero , Proteínas de Peixe-Zebra/metabolismo , Poluentes Químicos da Água/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38522711

RESUMO

Carbendazim is a widely used fungicide to protect agricultural and horticultural crops against a wide array of fungal species. Published reports have shown that the wide usage of carbendazim resulted in reprotoxicity, carcinogenicity, immunotoxicity, and developmental toxicity in mammalian models. However, studies related to the developmental toxicity of carbendazim in aquatic organisms are not clear. To address this gap, an attempt was made by exposing zebrafish embryos to carbendazim (800 µg/L) and assessing the phenotypic and transcriptomic profile at different developmental stages [24 hour post fertilization (hpf), 48 hpf, 72 hpf and 96 hpf). At 48 hpf, phenotypic abnormalities such as delay in hatching rate, deformed spinal axial curvature, and pericardial edema were observed in zebrafish larvae over its respective controls. At 72 hpf, exposure of zebrafish embryos exposed to carbendazim resulted in scoliosis; however, unexposed larvae did not exhibit signs of scoliosis. Interestingly, the transcriptomic analysis revealed a total of 1253 DEGs were observed at selected time points, while unique genes at 24 hpf, 48 hpf, 72 hpf and 96 hpf was found to be 76.54 %, 61.14 %, 92.98 %, and 68.28 %, respectively. Functional profiling of downregulated genes revealed altered transcriptomic markers associated with phototransduction (24 hpf and 72 hpf), immune system (48 hpf), and SNARE interactions in the vesicular pathway (96 hpf). Whereas functional profiling of upregulated genes revealed altered transcriptomic markers associated with riboflavin metabolism (24 hpf), basal transcription factors (48 hpf), insulin signaling pathway (72 hpf), and primary bile acid biosynthesis (96 hpf). Taken together, carbendazim-induced developmental toxicity could be ascribed to pleiotropic responses at the molecular level, which in turn might reflect phenotypic abnormalities.


Assuntos
Benzimidazóis , Carbamatos , Escoliose , Poluentes Químicos da Água , Animais , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Larva , Escoliose/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
8.
Chembiochem ; 25(8): e202400143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38442077

RESUMO

This study explores the potential of controlling organismal development with light by using reversible photomodulation of activity in bioactive compounds. Specifically, our research focuses on plinabulin 1, an inhibitor of tubulin dynamics that contains a photochromic motif called hemipiperazine. The two isomeric forms, Z-1 and E-1, can partially interconvert with light, yet show remarkable thermal stability in darkness. The Z-isomer exhibits higher cytotoxicity due to stronger binding to α-tubulin's colchicine site. The less toxic E-1 form, considered a "pro-drug", can be isolated in vitro and stored. Upon activation by blue or cyan light, it predominantly generates the more toxic Z-1 form. Here we demonstrate that 1 can effectively photomodulate epiboly, a critical microtubule-dependent cell movement during gastrulation in zebrafish embryos. This research highlights the potential of photomodulation for precise and reversible control of cellular activities and organismal development.


Assuntos
Gastrulação , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Gastrulação/fisiologia , Microtúbulos , Tubulina (Proteína)/metabolismo , Embrião não Mamífero
9.
Chemosphere ; 355: 141772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548084

RESUMO

Carbamazepine (CBZ) is the most commonly used drug in epilepsy treatment, and its metabolites are commonly detected among persistent pharmaceuticals in the aquatic environment. This study aimed to investigate CBZ effects on early-life-stage zebrafish (Danio rerio) (from 2 to 168 hpf) by employing of an integrative approach linking endpoints from molecular to individual level: (i) development; (ii) locomotor activity; (iii) biochemical markers (lactate dehydrogenase, glutathione-S-transferase, acetylcholinesterase and catalase) and (iv) transcriptome analysis using microarray. A 168 h - LC50 of 73.4 mg L-1 and a 72 h - EC50 of 66.8 mg L-1 for hatching were calculated while developmental effects (oedemas and tail deformities) were observed at CBZ concentrations above 37.3 mg L-1. At the biochemical level, AChE activity proved to be the most sensitive parameter, as evidenced by its decrease across all concentrations tested (∼25% maximum reduction, LOEC (lowest observed effect concentration) < 0.6 µg L-1). Locomotor behaviour seemed to be depressed by CBZ although this effect was only evident at the highest concentration tested (50 mg L-1). Molecular analysis revealed a dose-dependent effect of CBZ on gene expression. Although only 25 genes were deregulated in organisms exposed to CBZ when compared to controls, both 0.6 and 2812 µg L-1 treatments impaired gene expression related to development (e.g. crygmxl1, org, klf2a, otos, stx16 and tob2) and the nervous system (e.g. Rtn3, Gdf10, Rtn3), while activated genes were associated with behavioural response (e.g. prlbr and taar). Altogether, our results indicate that environmentally relevant CBZ concentrations might affect biochemical and genetic traits of fish. Thus, the environmental risk of CBZ cannot be neglected, especially in a realistic scenario of constant input of domestic effluents into aquatic systems.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Acetilcolinesterase/metabolismo , Carbamazepina/metabolismo , Dose Letal Mediana , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
10.
Cell Stress Chaperones ; 29(2): 285-299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428516

RESUMO

Females of the extremophile crustacean, Artemia franciscana, either release motile nauplii via the ovoviviparous pathway or encysted embryos (cysts) via the oviparous pathway. Cysts contain an abundant amount of the ATP-independent small heat shock protein that contributes to stress tolerance and embryo development, however, little is known of the role of ATP-dependent molecular chaperone, heat shock protein 90 (Hsp90) in the two processes. In this study, a hsp90 was cloned from A. franciscana. Characteristic domains of ArHsp90 were simulated from the deduced amino acid sequence, and 3D structures of ArHsp90 and Hsp90s of organisms from different groups were aligned. RNA interference was then employed to characterize ArHsp90 in A. franciscana nauplii and cysts. The partial knockdown of ArHsp90 slowed the development of nauplius-destined, but not cyst-destined embryos. ArHsp90 knockdown also reduced the survival and stress tolerance of nauplii newly released from A. franciscana females. Although the reduction of ArHsp90 had no effect on the development of diapause-destined embryos, the resulting cysts displayed reduced tolerance to desiccation and low temperature, two stresses normally encountered by A. franciscana in its natural environment. The results reveal that Hsp90 contributes to the development, growth, and stress tolerance of A. franciscana, an organism of practical importance as a feed source in aquaculture.


Assuntos
Artemia , Cistos , Animais , Feminino , Artemia/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Desenvolvimento Embrionário , Embrião não Mamífero/metabolismo , Cistos/metabolismo , Trifosfato de Adenosina/metabolismo
11.
Environ Toxicol Pharmacol ; 107: 104427, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527598

RESUMO

Ifosfamide is an alkylating antineoplastic drug used in chemotherapy, but it is also detected in wastewater. Here, the objectives were to (1) determine teratogenic, cardiotoxic, and mitochondrial toxicity potential of ifosfamide exposure; (2) elucidate mechanisms of toxicity; (3) characterize exposure effects on larval behavior. Survival rate, hatch rate, and morphological deformity incidence were not different amongst treatments following exposure levels up to 1000 µg/L ifosfamide over 7 days. RNA-seq reveled 231 and 93 differentially expressed transcripts in larvae exposed to 1 µg/L and 100 µg/L ifosfamide, respectively. Several gene networks related to vascular resistance, cardiovascular response, and heart rate were affected, consistent with tachycardia observed in exposed embryonic fish. Hyperactivity in larval zebrafish was observed with ifosfamide exposure, potentially associated with dopamine-related gene networks. This study improves ecological risk assessment of antineoplastics by elucidating molecular mechanisms related to ifosfamide toxicity, and to alkylating agents in general.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Ifosfamida/toxicidade , Ifosfamida/metabolismo , Frequência Cardíaca , Metabolismo Energético , Antineoplásicos/farmacologia , Larva , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
12.
Environ Sci Technol ; 58(14): 6128-6137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38530926

RESUMO

High-throughput transcriptomics (HTTr) is increasingly applied to zebrafish embryos to survey the toxicological effects of environmental chemicals. Before the adoption of this approach in regulatory testing, it is essential to characterize background noise in order to guide experimental designs. We thus empirically quantified the HTTr false discovery rate (FDR) across different embryo pool sizes, sample sizes, and concentration groups for toxicology studies. We exposed zebrafish embryos to 0.1% dimethyl sulfoxide (DMSO) for 5 days. Pools of 1, 5, 10, and 20 embryos were created (n = 24 samples for each pool size). Samples were sequenced on the TempO-Seq platform and then randomly assigned to mock treatment groups before differentially expressed gene (DEG), pathway, and benchmark concentration (BMC) analyses. Given that all samples were treated with DMSO, any significant DEGs, pathways, or BMCs are false positives. As expected, we found decreasing FDRs for DEG and pathway analyses with increasing pool and sample sizes. Similarly, FDRs for BMC analyses decreased with increasing pool size and concentration groups, with more stringent BMC premodel filtering reducing BMC FDRs. Our study provides foundational data for determining appropriate experiment designs for regulatory toxicity testing with HTTr in zebrafish embryos.


Assuntos
Dimetil Sulfóxido , Peixe-Zebra , Animais , Peixe-Zebra/genética , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/toxicidade , Benchmarking , Perfilação da Expressão Gênica , Transcriptoma , Embrião não Mamífero/metabolismo
13.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488018

RESUMO

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Ciclo Celular/genética , Polaridade Celular/genética , Embrião não Mamífero/metabolismo
14.
Chem Biol Interact ; 392: 110925, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452846

RESUMO

In recent years, carbon nanotubes (CNTs) have become one of the most promising materials for the technology industry. However, due to the extensive usage of these materials, they may be released into the environment, and cause toxicities to the organism. Here, their acute toxicities in zebrafish embryos and larvae were evaluated by using various assessments that may provide us with a novel perspective on their effects on aquatic animals. Before conducting the toxicity assessments, the CNTs were characterized as multiwall carbon nanotubes (MWCNTs) functionalized with hydroxyl and carboxyl groups, which improved their solubility and dispersibility. Based on the results, abnormalities in zebrafish behaviors were observed in the exposed groups, indicated by a reduction in tail coiling frequency and alterations in the locomotion as the response toward photo and vibration stimuli that might be due to the disruption in the neuromodulatory system and the formation of reactive oxygen species (ROS) by MWCNTs. Next, based on the respiratory rate assay, exposed larvae consumed more oxygen, which may be due to the injuries in the larval gill by the MWCNTs. Finally, even though no irregularity was observed in the exposed larval cardiac rhythm, abnormalities were shown in their cardiac physiology and blood flow with significant downregulation in several cardiac development-related gene expressions. To sum up, although the following studies are necessary to understand the exact mechanism of their toxicity, the current study demonstrated the environmental implications of MWCNTs in particularly low concentrations and short-term exposure, especially to aquatic organisms.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Nanotubos de Carbono/toxicidade , Larva , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Embrião não Mamífero/metabolismo , Poluentes Químicos da Água/toxicidade
15.
Sci Rep ; 14(1): 6918, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519522

RESUMO

Egg specific gravity is of relevance for fish recruitment since the ability to float influences egg and larvae development, dispersal and connectivity between fishing grounds. Using zootechnics, histological approaches, optical and electronic transmission microscopy, this study describes the morphogenetic mechanism of adhesion of the oil-drop covering layer (OCL) to the oil droplet (OD) in embryos of Merluccius merluccius under physical conditions reflecting the marine environment. The herein described primordial (p)OCL is a substructure of the inner yolk syncytial layer which contains egg organella aimed to mobilize lipidic reserves from the oil drop (OD) towards the embryo blood. It is shown that the timely OD-OCL assembly is a critical morphogenetic process for embryo and larvae survival. Such assembly depends on egg buoyance because of its influence on the embryo capacity to rotate within the perivitelline space. Therefore, oil droplet adhesion (ODA) eggs are capable to complete their development while oil droplet non-adhesion eggs (ODNA) dye soon after hatching. We show that gravity-dependent egg buoyance categories exhibit different ODA/ODNA ratios (0-77%) and that relationship diminishes under incubation systems such as sprayers, that do not assure a dynamic seawater surface mixing to avoid egg desiccation. As an adaptive trait, egg gravity strongly depends on oceanic properties such as current dynamics, turbulence, oxygen, rainfall, and salinity, whose rapid changes would likely challenge the sustainability of fisheries recruitment.


Assuntos
Gema de Ovo , Embrião não Mamífero , Animais , Gema de Ovo/química , Desenvolvimento Embrionário , Ovos
16.
Chemosphere ; 353: 141589, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432465

RESUMO

A comparative toxicity of widely applied organic solvents (methanol, ethanol, n-propanol, i-propanol, n-butanol, 2-butanol, i-butanol, t-butanol, 3-methoxy-3-methylbutanol-1 (MMB), ethylene glycol, diethylene glycol, 2-methoxyethanol, 2-ethoxyethanol, glycerol, ethyl acetate, acetonitrile, benzene, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 2-pyrrolidone, and N-methyl-2-pyrrolidone) and surfactants (PEG 300, PEG 6000, Tween 20, Tween 80, miramistin, and Cremophor EL) was studied using a sea urchin embryo model. Sea urchin embryo morphological alterations caused by the tested chemicals were described. The tested molecules affected P. lividus embryo development in a concentration-dependent manner. The observed phenotypic anomalies ranged from developmental delay and retardation of plutei growth to formation of aberrant blastules and gastrules, cleavage alteration/arrest, and embryo mortality. Discernible morphological defects were found after embryo exposure with common pharmaceutical ingredients, such as glycerol, Tween 80, and Cremophor EL. In general, solvents were less toxic than surfactants. PEG 6000 PEG 300, DMSO, ethanol, and methanol were identified as the most tolerable compounds with minimum effective concentration (MEC) values of 3.0-7.92 mg/mL. Previously reported MEC value of Pluronic F127 (4.0 mg/mL) fell within the same concentration range. Toxic effects of methanol, ethanol, DMSO, 2-methoxyethanol, 2-ethoxyethanol, Tween 20, and Tween 80 on P. lividus embryos correlated well with their toxicity obtained using other cell and animal models. The sea urchin embryos could be considered as an appropriate test system for toxicity assessment of solvents and surfactants for their further application as solubilizers of hydrophobic molecules in conventional in vitro cell-based assays and in vivo mammalian models. Nevertheless, to avoid adverse effect of a solubilizing agent in ecotoxicological and biological experiments, the preliminary assessment of its toxicity on a chosen test model would be beneficial.


Assuntos
Etilenoglicóis , Glicerol/análogos & derivados , Metanol , Polissorbatos , Animais , Polissorbatos/toxicidade , Glicerol/toxicidade , Dimetil Sulfóxido , Tensoativos/toxicidade , Solventes/toxicidade , Ouriços-do-Mar , Etanol/farmacologia , Excipientes/química , 1-Propanol , Embrião não Mamífero , Mamíferos , Polietilenoglicóis
17.
Sci Total Environ ; 923: 171510, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38453076

RESUMO

Shallow waters are characterized by fluctuating environmental conditions, modulating marine life cycles and biological phenomena. Multiple variations in water temperature could affect eggs and embryos during spawning events of many marine invertebrate species, yet most of the findings on embryonic development in invertebrates come from experiments based on the constant temperature. In this study, to examine the effects of temperature variation on octopus embryos, Amphioctopus fangsiao, a common shallow-water octopus along the coast of China, was exposed to the constant temperature (18 °C, in situ temperature of the seawater in Lianyungang), ramping temperatures (from 18 to 24 °C), diel oscillating temperatures (18 °C and 20 °C for 12 h each day), and acute increasing temperatures (the temperature increased sharply from 18 °C to 24 °C at embryonic development stage XIX) for 47 days (from embryogenesis to settlement). The results demonstrated that the temperature variations accelerated the development time of A. fangsiao embryos. Temperature fluctuations could cause embryonic oxidative damage and disorder of glycolipid metabolism, thereby affecting the growth performance of embryos and the survival rate of hatchings. Through transcriptome sequencing, the mechanistic adaption of the embryo to environmental temperature variations was revealed. The pathways involved in the TCA cycle, DNA replication and repair, protein synthesis, cell signaling, and nervous system damage repair were significantly enriched, indicating that the embryo could improve heat tolerance to thermal stress by regulating gene expression. Moreover, acute warming temperatures posed the most detrimental effects on A. fangsiao embryos, which could cause embryos to hatch prematurely from the vegetal pole, further reducing the survival of hatchings. Meanwhile, the diel oscillating temperature was observed to affect the normal morphology of the embryo, resulting in embryo deformities. Thus, the constant temperature is critical for balanced growth and defense status in octopuses by maintaining metabolism homeostasis. For the first time, this study evaluates the effects of multiple temperature fluctuations on embryos of A. fangsiao, providing new insights into the physiological changes and molecular responses of cephalopod embryos following dynamic temperature stress.


Assuntos
Octopodiformes , Animais , Humanos , Recém-Nascido , Temperatura , Água , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário
18.
J Transl Med ; 22(1): 253, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459561

RESUMO

Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.


Assuntos
Poluentes Ambientais , MicroRNAs , Animais , Feminino , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Embrião não Mamífero/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia
19.
Environ Pollut ; 348: 123826, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513941

RESUMO

As an important psychoactive substance, cotinine is ubiquitous in aquatic environment and poses a threat to aquatic organisms. However, the mechanism of its adverse health impacts remains unclear. We evaluated the effects of cotinine exposure at environmentally relevant concentrations on the development and locomotor behavior of zebrafish (Danio rerio) larvae using neurotransmitters and whole endogenous metabolism. Mild developmental toxicity and significant neurobehavior disorder, such as spontaneous movement (1-1000 µg/L), 48 hpf tactile response (50, 100, and 1000 µg/L), and 144 hpf swimming speed (1, 10, 100, 500, and 1000 µg/L), were observed in zebrafish. Exposure to cotinine led to significant alterations in 11 neurotransmitters, including homogentisic acid, serotonin, glutamic acid and aspartic acid, etc. 298 metabolites were identified and two pathways - linoleic acid metabolism and taurine and hypotaurine metabolism - were delineated. In addition, amino acid neurotransmitters were significantly correlated with metabolites such as arachidonic acid as well as its derivatives, steroidal compounds, and amino acids. Serotonin demonstrates a noteworthy correlation with 31 out of 40 differentially expressed neurotransmitters, encompassing lipids, amino acids, and other compounds. These novel findings contribute to a comprehensive understanding of the ecological risks associated with cotinine contamination in surface waters.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Cotinina , Serotonina , Larva , Aminoácidos/metabolismo , Neurotransmissores/metabolismo , Poluentes Químicos da Água/metabolismo , Embrião não Mamífero
20.
Sci Total Environ ; 924: 171678, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38485016

RESUMO

The ubiquity of amino antioxidants (AAOs) in the environment has attracted increasing attention, given their potential toxicity. This investigation represents a pioneering effort, systematically scrutinizing the toxicological effects of four distinct AAOs across the developmental spectrum of zebrafish, encompassing embryonic, larvae, and adult stages. The results indicate that four types of AAO exhibit varying degrees of cell proliferation toxicity. Although environmentally relevant concentrations of AAOs exhibit a comparatively circumscribed impact on zebrafish embryo development, heightened concentrations (300 µg/L) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD) distinctly evoke developmental toxicity. Behavioral analysis results indicate that at concentrations of 20 and 300 µg/L, the majority of AAOs significantly reduced the swimming speed and activity of larvae. Moreover, each AAO triggers the generation of reactive oxygen species (ROS) in larvae, instigating diverse levels of oxidative stress. The study delineates parallel toxicological patterns in zebrafish exposed to 300 µg/L of 6PPD and IPPD, thereby establishing a comparable toxicity profile. The comprehensive toxicity effects among the four AAOs is as follows: IPPD >6PPD > N-Phenyl-1-naphthylamine (PANA) > diphenylamine (DPA). These findings not only enrich our comprehension of the potential hazards associated with AAOs but also provide data support for structure-based toxicity prediction models.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Antioxidantes/metabolismo , Fenilenodiaminas/toxicidade , Estresse Oxidativo , Larva , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...